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Heavy-ion interaction in a nonisothermal plasma with two-ion correlation effects
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The results of a theoretical investigation of the slowing down of a heavy-ion pair, injected into a classi-
cal dense plasma with a velocity smaller than the average electron speed, are presented, paying particu-
lar attention to the two-ion correlation effects. Within the dielectric approach, both the electron and ion
populations, possibly with different temperatures, are considered to participate in the plasma response
via the excitation and damping of ion-acoustic and ion plasma oscillations. The electrostatic potential
perturbation generated by test ion pairs and their stopping power are computed.

PACS number(s): 52.40.Mj, 28.50.—k

I. INTRODUCTION

The relevance to the proposed scheme of inertial
confinement fusion (ICF), based on the use of heavy-ion
beams (HIBs) to drive the D-T target towards the igni-
tion conditions [1], has produced in the last few years a
continuously increasing interest in the basic interaction
processes occurring between ensembles of fast HIs and
dense plasmas.

Several reasons support the fact that even a single HI
manifests a larger stopping power in a plasma than in a
cold gas due either to the higher ionization state which is
established in a plasma [2] or to its more effective interac-
tion with free electrons than with bound electrons [3].

Furthermore, it has been demonstrated that when two
fast HIs, of charge states Z; and Z,, move in a plasma,
their behavior can be appreciably different from the pre-
dictions of single particle theories if their mutual distance
d is of the order of or smaller than the effective screening
length, A g~v,/w,, [4,5]. We note that for fast charged
particles A.; is larger than the corresponding static
screening length, i.e., the Debye length Ap, =vy, /@,
[6]. Here v, and vy, are the velocity of the projectile HI
and the electron thermal speed, respectively, and w,, is
the electron plasma frequency. This “modified” interac-
tion can be easily explained by assuming that when
d << .4 the plasma response to two test ions is that it
would manifest in the presence of a single projectile hav-
ing a total charge almost equal to Z,+Z,. Since the
stopping power of a charged particle is proportional to
Z?, the important role of “vicinity” effects (which we
shall call “two-ion correlation” effects) is evident.

Two-ion correlation effects on the stopping power of a
couple of HlIs, traveling along a straight trajectory, with
the same fixed velocity v,, have been previously investi-
gated in the limit of fast projectiles, i.e., v, >>vy, [4,5,7],
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by neglecting the response of the plasma ions due to their
large mass. In particular, in Ref. [4] the consequences of
an average procedure over a uniform angular distribution
of the interionic vector d have been considered; in Refs.
[5,7] the influence of the closeness of two aligned (i.e.,
with dXv,=0) ions on their stopping power has been
evaluated; finally, in Ref. [7] the forces acting on the two
ions, and induced by their motion in a dispersive plasma,
have been investigated in detail for an arbitrary orienta-
tion of the vector d.

When most of the slowing down process of the incom-
ing ions occurs at velocities lower than v, in general a
correct evaluation of the stopping power, and then of the
relevant correlation effects, requires that plasma ion dy-
namics is retained as well [8,9].

In the present paper a detailed analysis of the electro-
static potential induced by two “close” projectile ions
traveling in a two-component (electrons and ions), non-
isothermal (7,7 T;) plasma is presented together with
the evaluation of the relevant stopping power and power
deposition profiles, retaining two-ion correlation effects
[10].

Besides the interest of principle for the physical prob-
lem of the stopping power of mutually correlated charged
particles, its relevance for the ICF is motivated by the
proposed scheme which foresees the use of cluster ion
beams (CIBs) [11], instead of conventional HIBs, to drive
the target towards the ignition, due to their much
stronger interaction with matter and to the reduced beam
current during the acceleration phase. When a molecular
cluster penetrates the matter (which we shall assume to
be already in the state of plasma), the Coulomb explosion
creates a swarm of debris, whose dynamics is strongly
correlated due to their small mutual distances (of the or-
der of a few A). Moreover, due to their large mass, to de-
posit the required amount of energy into the target, a lim-
ited cluster velocity is sufficient. A detailed discussion of
the potentialities of CIB in ICF can be found in Ref. [12].

In Sec. II the potential wake generated by HIs in non-
isothermal plasmas and the relevant stopping power are
first computed in the one-dimensional (1D) case. The full
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three-dimensional (3D) analysis of the interaction of HIs
in nonequilibrium plasmas is then considered in Sec. III.
Here, a detailed study of the electrostatic potential in-
duced by a single slow ion and the stopping process of an
uncorrelated particle and of two correlated ions in a
two-temperature plasma are discussed. Section IV is de-
voted to the summary of the results and to their discus-
sion. The discussion on the choice of the upper cutoff in
the k integration occurring in computing the stopping
power can be found in the Appendix.

II. HEAVY-ION STOPPING
IN DENSE PLASMAS: 1D CASE

Let us consider first a fully ionized collisionless plasma
composed of electrons and ions, of charge number Z;.
Let each species be characterized by its own unperturbed
density n,, and temperature T,, with a=e,i, respective-
ly, with Z;n;y=n,.

In this section we perform a preliminary analysis of the
stopping properties of a dense nonisothermal plasma by
assuming that the system remains uniform and unper-
turbed in the plane (y,z) perpendicular to the direction of
motion of the projectile ions, the x axis. This corre-
sponds to considering the stopping process of charged
sheets moving along the x direction.

The plasma response to external perturbations can be
described on the basis of a kinetic theory in terms of the
distribution functions f,(x,v,2)=8(v,)8(v,)F,(x,v,,?),
which satisfy the Vlasov equations

v

x
X — , UV— , tl—w,,t,
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=Vihe /Apes M =m;/m,. For the sake of simplicity a hy-
drogen plasma (Z; =1, M =1840) has been considered.

The electrostatic (ES) potential ¢(x,?) represents the
perturbation induced by the transit of two projectile ions
(positively charged sheets) with the same charge state
Z &, moving with the same velocity v, and separated by a
fixed distance d, and is consistently described by the Pois-
son equation
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where Z =(Z ﬂv/n“)?»De )(n(2 /nl?) is the interaction pa-
rameter, n!! is the unperturbed line (along x) electron
density, n®) is the surface (in the plane y,z) electron den-
sity, and Zeﬂnf) is the surface charge distribution of the
projectile ions. These latter two quantities are assumed to
be constant.

The Vlasov-Poisson system (2.1), (2.3) can be linearized
when the interaction is weak, that is, for Z << 1. In this

9F, +v __¢_ 9F, =0 (2.1a)  case, by using standard techniques of Laplace-Fourier
ot a ax o ’ transforms, it is possible to obtain the first order ES po-
tential induced by the presence of the two ions in a non-
oF; v F; _ 1 3¢ OF; oF;, (2.1b) isothermal unidimensional plasma; it reads
at ax Max v 7z f o o ikx i) (
(x,t)=—"—"— dk———————(1+e~ , 2.4)
o iy g 2mJ - " K2e( |kl kv,)
Here, the following dimensionless quantities have been
introduced: where the explicit form of the dielectric function is
J
(el 1 1 T, n, T, 172 m, 172 kv, s
EEL k2 =2 T, n, T, m, |k| ’

and W (&{)=X(&£)+i (£) is the plasma dispersion function
[6]. Here, unperturbed Maxwellian distributions have
been assumed.

Before going into the discussion of the stopping power
of the injected ions, we spend a few words on the ES po-
tential distribution ¢{!’(x,?) induced by a single ion mov-
ing with a given velocity v,. Due to the linear character
of our analysis, it will then be straightforward to find the
potential created by the ion pair. Let us notice that the
ion thermal velocity vy, =4/ T;/m; and the ion-acoustic
speed c¢,;=1/'T,/m; in dimensionless units read
vth,‘=T“”2M‘1/2 and ¢, =M 172, respectively. In Fig.
1 we have plotted the potential ¢{!’ as a function of the
coordinate x —v,t—§ due to a charge Z =1 placed at

[

£=0, for different values of the ion velocity, i.e.,
v, =0.001 (a), 0.0136 (b), 0.0184 (c), 0.022 (d), 0.5 (e). The
value T=T,/T;=36 has been chosen. It is seen that by
increasing the partlcle velocity from v, <T~'>M ™'/ (a)
to M~V 2<vp <1 (e), corresponding to two situations in
which the particle is dynamically screened, respectively,
by the ions or by the electrons, physical conditions can be
found which are characterized by the excitation of both
strongly damped [(b) and (d)] and weakly damped (c)
plasma oscillations. These last plots refer to
T Y2M 12« v, <M ™12 an interval existing only in
nonisothermal plasmas, i.e., for T > 1. By expanding the
plasma dispersion function relevant to the electrons for
small argument and that of the ions for large argument,
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Eqg. (2.5) can be computed analytically and the potential
takes the form

2 O(—&)sin 2.6

B
where B2=M ~'—v2>0. Equation (2.6) describes the un-
damped induced oscillation, that is, it does not contain

the effect of Landau damping.
This preliminary study of the characteristics of the po-
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FIG. 1. One-dimensional ES potential ¢{!’ (in units of T, /e),
induced by the presence of a moving charged particle, with
Z =1, in a nonisothermal plasma, as a function of the spatial
coordinate §=x —uv, (in units of Ap,), for T =36 and v, =0.001
(a), 0.0136 (b) 0.0184 (c), 0.022 (d), and 0.5 (e¢). Here v,; =~0.004
and ¢;~0.023. All the quantities are normalized according to
Egs. (2.2).

tential perturbation induced in a nonequilibrium plasma
by a test ion, and the appearance of velocity intervals in
which the excitation of long-range plasma oscillations
occurs, supports the further search for the two-ion corre-
lation effects on the stopping power when the average in-
terionic distance d is comparable to or smaller than the
typical wavelength of the excited oscillations.

Let us introduce the stopping power for a couple of
ions traveling in a plasma composed by electrons and a
thermal ion species. It reads

dE ~ A
—E=F-ex|§=0+F-ex|§=_uP,
9%, 9¢,
_ZND{ 3 3 |e=—ur | 2.7)

where Np =n A5, >>1. Again, by suitable expansions of
the plasma dispersion function, we can approximate the
stopping power of a single ion, depending on its velocity,
by the equation

dE 1

— =2 2NV

dx =2 (2.8)

where
y=1 forv,>1 and (MT)"'?<v,<M™!7?
1 Up

7/='—_—_—

V2 1—1/Mvp2

v 1+ T3/2 Ml/2 _
'y=‘/§—ﬂ_ T for 0<v, <(MT)"'/%,

As an example, in Fig. 2 the stopping power (normal-
ized to Z>N, /2) of a single ion is plotted for v, <1, and
different temperature ratios, 7°=2.25,9,49. For T =49,
the ion thermal speed v,=(MT)"'/?=0.003 and the
ion-acoustic velocity v, =M ~!/2=0.023, and in this in-
terval a strong enhancement of the stopping power
occurs for T >>1.

Coming now to the slowing down process of an ion
pair, Fig. 3 shows the stopping power (normalized to
Z2N,, /2) versus v, for two equally charged ions, d =30

»
away from each other, for T'=25 and 100. It can be not-

for M“1/2<vp<1 ,
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FIG. 2. The stopping power —dE/dx [in units of

(Z?Np /2)(T. /e)] of a single ion moving in a nonisothermal
plasma is plotted versus v, (in units of vy,) for v, <1. Here,
T =2.25 (dash-dotted line), 9 (dotted line), and 49 (continuous
line).
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FIG. 3. —dE /dx

The stopping power
(Z2Np /2)(T,/e)] of a system of two equally charged ions,
separated by a distance d /Ap, =30, is plotted versus v, (in units
of vy,.), for T =25 (continuous line) and 100 (dotted line).
Dashed line refers to the system of two uncorrelated ions (corre-
sponding to d = o).

[in units of

ed that by increasing the nonisothermicity of the plasma
(with T >>1), the range of projectile velocities affected by
correlations increases as well.

When an ion pair is moving in a one-dimensional plas-
ma, the stopping power of the whole system turns out to
be modified with respect to that predicted by an uncorre-
lated particle model. By introducing the expansions of
the plasma dispersion function, it is possible to derive ap-
proximate analytical expressions for the stopping power
of the two-ion system. We have

172 2
Z°Npy,

1’2

dE _

dx T

1 - .
X {1+ —S—nvpfr[e nu"T(El(nva)—El(nva))

+2¢"7"E (qu,m)] [ , 2.9)
with n=1"1—1/Mv?, for M~ <<v, <<1, and
dE ,
—EQZZND[I-FCOS(W v,7)], (2.10)

with 7'=v"1/Mv2—1, for (MT)™"/? <<v, <<M ~'72,
Ei and E, are the exponential integral functions [13].
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FIG. 4. Energy deposition profile, —dE /dx (in units of
T./Ap.), versus R (v) (in units of Ap,), for an ion pair with
v, =0.03 and m, =40 amu. Other parameters are the same as in
Fig. 3.

The power deposition profile of a charged particle can
be obtained from the knowledge of the partial range, that
is, of the function R (v),

_dE' |

R(E)=— [ dE" |- @.11)

where in dimensional units E =mpv2/2. In Fig. 4 the
normalized stopping power (function of v) of two corre-
lated ions is shown versus R (v), for the same parameters
as in Fig. 3. The injection velocity of the two particles is
v, =0.03 and m, =40 amu.

III. HEAVY-ION STOPPING
IN DENSE PLASMAS: 3D CASE

In this section, we extend the analysis of the stopping
properties of a nonisothermal plasma to the three-
dimensional case. Again, the two-component background
plasma is assumed to be Maxwellian with T,%T;. The
relevant dimensionless linearized equations for the first
order distribution function of the a species, f,(r,v,?),
and for the associated ES potential perturbation, ¢,(r,?),
are now

of 1o af,, O 9f e
f1 v /1 +_ﬁ_ fo

ar ar Tar av O G.1a)
af 1 afy; 1 9 9fy
ar ' ar M or ov (3.1b)
Vi =—Z8(r—v,t)—Z8[r—(v,t+d)]
+fd3vfle(r,v,t)
—(TM)" [ d% f(r,v,0) (3.1¢0)
where the dimensionless variables
r— vV— v t—>tw
}"De ’ Uthe ’ el
3 (3.2)
v a
8L, fuorfum22 (a=e,i)

have been introduced. Again, T=T,/T;, M =m;/m,,
Vtha = ( Ta/ma )1/2’ }"De =( Te /4#”62)1/2, wpe “Uthe /}"De'
A hydrogen background plasma is considered.

Equation (3.1c) contains two pointlike HIs as source
terms, placed at r=v,t and r=v,t +d, where v, and d
are assumed to be given constant vectors. Later on, when
two-ion correlations will be discussed, the particular case

of aligned ions (i.e., d||v,) will be considered.

A. The electrostatic potential induced by a single test ion

By Fourier-Laplace transforming Egs. (3.1), we obtain
the asymptotic form of the linearized ES potential ¢,(r,?)
generated in the plasma by the two ions:

etk-(r—vpt)

kzs(k,k-vp)

¢,(r,1)= (22)3 Jdk (14e " ikd) (3.3)
o

where the dielectric function for longitudinal oscillations
is
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e(k,w)=1+7(1—2 w2 |\ s1w|12m1 22 (3.4)

o
k

In the linear approximation, the potential distribution
created by the two ions is the superposition of the distri-
butions associated with each of the two projectiles. Let
us consider, for simplicity, the potential created by a sin-
gle ion, and introduce the reference frame moving with
the velocity v,, and such that the source charge is placed
at its origin. With the £ axis along v,, we can introduce

the position vector r=£€, +pe The ES potential then
takes the form

(D)= o e —

¢\ (r)= Zf dkf du T ko, )Jo(kp\/l ud,

(3.5)

where J;, is the Bessel function of zero order, u=-cosé,
and 0 is the angle between k and v,,.

The explicit computation of the integral in Eq. (3.5)
has been performed either numerically or analytically,
under ad hoc assumptions, in the velocity ranges [0,vy,; ],
[VehisCs 1> [C5rV e ] for T > 1. Here ¢, =(T,/m;)'/? is the
ion-sound speed.

1. Electrostatic potential for v, <<vy,; [v, <<( T™) /2]

For small projectile velocities by expanding W (&) for
¢ << 1, Eq. (3.5) can be approximately written as the sum
of two contributions

¢(r)=¢%r)+¢!(r) ,

923
where
—Br
¢°(r)=zz7; —, 3.7)
¢ (r) __Z____ (1+T3/2M1/2)
! 4(2m)*"? Br

X {[1+Br+(Br)*le PEi(Br)
+[1—=Br+(Br)*1e”E,(Br)—2pr}+0(v}) ,
(3.8)
B=V1+T, and r=V'E2+p?. Equations (3.7) and (3.8)

represent a vacuum ES potential screened on a distance
Ap=Ap,/V'1+T, plus a linear (in €,-v,) correction.

2. Electrostatic potential for v,,; <<v, <<c;
[(TM) 1% <<v, <<M ~1/?]

When T >>1 it is possible to neglect the electron con-
tribution in the real part of ek,w), ie.,
k2e~k*— (M vﬁuz)_l. Therefore the zeros of the denomi-
nator exist only for k values belonging to the interval

[0,T!/2]. This suggests splitting the k integral in Eq.
(3.5) as follows:

r)=¢, . 70+, 7(1). (3.9)

Moreover, the condition k >1/M!'?v, makes the

denominator in ¢, _, 7 vanish for p=p,~+1/kM'%,
with |py| <1. ¢, 7 is then written as the sum of two
contributions, as

, z 1/V My,
¢ (r)-4—77_2f0

ak [ *lap

¢”(r

Z v'T
fl/\/M dk

$dp

¢"'(r) turns out to have an oscillating character to which
the elementary modes with A > A ;,; contribute.

We report in the following the approximate expres-
sions of the potential distributions ¢, _,+ and ¢, _ 7 in
the particular case of p=0 (except for ¢'’, whose depen-
dences both on £ and p are evidenced), that is along the £
axis:

b <7 (D)=¢"(r)+4"(r) (3.10)
(3.6)  where
|
e'kéuy (kp\/l—/,l,z)
: 2.2 22 ’ (3.11)
1+;’2_{_‘M2 2—.— 1-27-— vp#[e_vpll'/z_'_T:;/le/ze—TMvpp,/2]]
CHY
kény (kpV'1—p?)
e olkp u
(3.12)
L s =022 | 3172, ~ TMOREE /2
1+7<—? ‘M—z_—2+i_ Vi e P +T32M172¢ »
VU
[
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¢r(§,p=o)g__z_2_ 2P ‘\/_1“ g
27T g Mvp M "
l1+§ sin —‘/—i——
My,
2|6

+2 S| == , .11
3 ! VMu, ” ( )
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"(§p)=—H | =~ -
o cos[V/3E2/TM 2 —p? /Mv?) 312
V362 /TM v} —p*/Mv?
Moreover, we have
by 7 (D) =01r)+¢%(r)+43(r) (3.13)
with
¢1(§,p=0)————g siVTE), (3.14)
VTMy
¢2(§,p=0)5—%‘/1‘;v S axw, (3.15)
LI
0 ~___é _§_ - R
#(ep=0)= P[ 20} M 2Mv} ]
(3.16)

and X is the real part of the plasma dispersion function
(see Sec. II). Equation (3.12') describes the Cherenkov
cone of ion plasma and ion-sound oscillations following
the test ion. Its semiaperture is a=tan"(}/3/ TMv})
which manifests a dependence on the temperature ratio,
J
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besides that on the particle velocity. A constant approxi-
mated damping rate " in Egs. (3.12') has been intro-
duced following the considerations by Peter [14]. The
function Si(z) is the sine integral function and
si(z)=Si(z)— /2. They are defined in Ref. [13].

3. Electrostatic potential for ¢, <<v, <<v,
[M~12 <<, <<1]

The expansion of the electron and ion susceptibilities
for small and large argument, respectively, allows one to
evaluate the dielectric function as
k2e(k,kpv,)=k*+1—1/Mu’v;}. For v,>M ~'/?, the p
integration should be performed taking account of the
presence of two symmetric poles at
,ui=i[(k2+1)Mvp2]_1/2. To get an approximated semi-
analytical expression for the ES potential, it is possible to
substitute the integral in u, between —1 and + 1, with an
integration along a closed circuit which is obtained by
closing the straight path from —1 to +1 with the half
circle, in the upper part of the u plane, proceeding from
+1 to —1, following the procedure discussed by Peter in
Ref. [14].

If the poles are situated sufficiently close to the real-k
axis, the following approximate expression is found to be
valid along the direction of the ion motion (p=0):

k §

$i(£,p=0)= —&) [ “dk

20V My

Xexp

172
- | =

We observe that both in the case described in Sec.
IIT A 2 [see Eq. (3.11')] and that described in Sec. IITA 3
[see Eq. (3.17)] the ES potential excited by the transit of
the test ion has oscillating contributions characterized by
a typical wavelength of the order A=27M!/ va, indepen-
dent of the temperature ratio 7.

Numerical integration of Eq. (3.15) has been performed
by retaining the full expression of the dielectric function
[see Eq. (3.4)]. In Fig. 5 the dimensionless ES potential
#, is plotted versus the £ coordinate for p=0, v, =0.02,
Z =0.077 (corresponding to Z =10, T,=100 eV, and
n,=10' cm™3), and for different values of T: 0.33 (curve

) 1 (curve b), 3 (curve c), 10 (curve d). Here Ap, =0.02
pm. In Fig. 6 ¢, versus £ is shown for 77=10 (T,=100
eV, T;=10 eV) and different values of v,: 0.005 (curve a),
0.01 (curve b), 0.02 (curve c), 0.04 (curve d), 0.1 (curve e).
We remind the reader that the reference frame moving at
v, has been introduced (x —v,¢—£). From inspection of
Fig. 6 it is observed that depending on the particle veloci-
ty different regimes of wave excitation occur. For exam-
ple, at low velocities [i.e., v, <(TM)™ /%, as for curve a],
only a limited deformation of the static Debye screening
is produced. In the range (TM)™'/><v, <M ~'/? (corre-
sponding to curves b and ¢) oscillations with a typical

k .
H
) ( o RN s1n[(

__2L2_|_L|[e-1/[m<k2+1)]
k“+1)

k*+1)12 VMo,

- +T3/2M1/2e—r/[2<k2+1)]]
p

(3.17)

0.02 1
0.01
a b
e J
S
0 j ]

-0.01 J

A

'
AN

FIG. 5. Three-dimensional ES potential (in units of T, /e), for
p=0, versus §=x —v,¢ (in units of Ap,), induced in a noniso-
thermal plasma by the transit of a single charged particle with
v,=0.02, Z =0.077, and for T =0.33 (curve a), 1 ( curve b), 3
(curve ¢), and 10 (curve d). All the quantities are normalized ac-
cording to Egs. (2.2). Here the corresponding dimensional pa-
rameters are n, =10 cm ™3, T, =100 eV, Z ;= 10.
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-0.01 — : * : ' ‘

FIG. 6. Three-dimensional ES potential (normalized to T, /e),
for p=0, versus £=x —uv,t (in units of Ap,), induced in a non-
isothermal plasma by the transit of a single charged particle
with T'=10, Z =0.077, and for v, =0.005 (curve a), 0.01 (curve
b), 0.02 (curve c), 0.04 (curve d), and 0.1 (curve e). The corre-
sponding dimensional parameters are the same as in Fig. 5.

wavelength of the order of A, appear. At supersonic ve-
locities, i.e., v, >M ~172 (curves d and e), long wavelength
oscillations are excited. We remind the reader that for the
projectile-plasma parameters considered, (7TM) 172
~0.0074 and M ~'/2=0.023.

By defining L as the distance between the first two
zeros of the potential, and A4 the maximum amplitude
(better, its modulus) of the potential well following the
projectiles, a numerical study of the dependence of the
potential perturbation on the physical parameters has
been performed. In Fig. 7 the amplitude A4 versus the
particle velocity v, is shown for different values of T (10,
49, 100). It is shown that the normalized amplitude of
the potential well increases with the temperature anisot-

plY (o, )+ TY(T'V*M ' 2uv,)]

0.10
0.08+

0.06- ,
<
0.04]

0.02-
! [ - -

0.02

0.00
0.00

FIG. 7. The amplitude 4 (normalized to T, /e) of the first ES
potential well behind the charged particle, moving in a noniso-
thermal plasma, as a function of the particle velocity v, (in units
of vy,.), for T=10 and Z =0.077 (W), and for T=49 (K), 100
(@), and Z =0.24.

ropy, due to the corresponding increase in the efficiency
of ion-acoustic wave excitation. Moreover, the curves are
characterized by a maximum around the ion-sound
speed. At increasing velocities, the ion damping decreases
exponentially in the range vy,; <<v, <c,, while the wave
damping on the electrons begins to affect the excitation
process, at v, =~c;.

Figure 8 shows the dependence of the width L of the
potential well as a function of v,, for different 7" values.
The almost linear increase of L can be related to the esti-
mate given above of the typical wavelength of the poten-
tial perturbations, A «<M!/ 2u[,, which also supports the
insensitivity of the curves to the temperature ratio 7.

B. The stopping power of a single ion

Before going into the study of a two-ion system, let us
consider in detail the stopping power of a single HI when
its velocity is lower than the thermal electron speed. The
spatial derivative of Eq. (3.5) computed at the position of
the test ion, r=0, gives the stopping power, i.e.,

dE 3¢y
===ZN
dx D 3E |e=o
Z>Np  pkpax 1
= k 3
- fo dk k fod,u

An upper limit on the k integration should be imposed
since our dielectric description loses its validity for im-
pact parameters b smaller than that corresponding to
close interaction b, ,,, or, equivalently, for wave numbers
k larger than k =1/b,;,. We observe that, strictly speak-
ing, the electron and the ion response to the perturbation
induced by the test ion cannot in general be separated in
the sum of an electronic and an ionic contribution since
in the denominator of Eq. (3.18) the dielectric permittivi-
ty contains the effects of both plasma populations. The

problem then arises of the most correct choice of k,,,

(k24X (uv,)+ TX (T 2M ' 2pv,) P+ Y (v, )+ TY (TV2M v,

(3.18)

below which the dielectric description of the plasma is
valid. A specific discussion on this point is given in the
Appendix. Here we just report the criterion which has
been adopted to evaluate k_,.. First, we define a
minimum impact parameter for the interaction between
the test ion and plasrha electrons, b{;,, and a correspond-
ing quantity for the interaction between the test ion and
the plasma ions, b’ ;. Then, we choose k,, in Eq.
(3.18) as the minimum between 1/b¢;, and 1/b’,, for a
given choice of the parameters of the physical system un-
der consideration. In dimensionless quantities the
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FIG. 8. The width L (in units of Ap,) of the first ES potential
well behind the charged particle, moving in a nonisothermal
plasma, as a function of the particle velocity v, (in units of vy,),
for the same parameters as in Fig. 7.

minimum impact parameters for each species are

z ; V4 m,

—= b, =
4r(v2+2) T ™ 4n(pi+2/TM) m

b fnin = ’
where m,=m;m, /(m;+m,) is the reduced ion mass.

Equation (3.18) has been integrated numerically for ar-
bitrary values of the physical parameters, and approxi-
mated evaluations of the stopping power in the three ve-
locity ranges considered in the preceding subsection have
also been found analytically.

1. Stopping power for v, <<vy;

Under the condition v, << (TM)™ 12 we can set ap-
proximately Y (&)= (m/2) % <1, and
Rec~1+(1+T)/k?% The stopping power takes the form

dE _ Z’Np

1+T3/2M1/2\
dx = 12vzr 2 !

3/2°P

T+1
+7T+1

max

T+1

k: +T+1
X |Iln —

k2

max

(3.19)
2. Stopping power for v,,; <<v, <<c;

According to the considerations made in computing
the corresponding ES potential, it is convenient to per-
form the k integration separately in the three intervals
[0,1/M"%,], [1/M"?,,T'?], [T/, kp, ] The first
two contributions, which correspond to integration over
wavelengths larger than the ion Debye length, give the
collective part of the stopping power, while the third in-
tegral, extended over wavelength smaller than Ap;, pro-
vides its individual part. Indeed, by considering the dom-
inant contributions we can write

dE

11—— dx (3.20)

ind
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_dE ~-—1 (M7 ), (3.20a)
dx coll 47TMU
_ili I~ ZZND v ln 1 l
dx |ima 6V2732°P | VT be,
Z*N
2 L _1 (3.20b)
47TMvp VT bl

It is important to observe that in computing the indivi-
dual part of the stopping power in the velocity range con-
sidered here, it is possible to separate the electron and the
ion response into two terms independent of each other.
As a consequence it is justified to attribute to each term
its own k.. This is not the case in computing the col-
lective part of the stopping power.

3. Stopping power for ¢, <<v, <<v,,

Following the same procedure used in computing the
ES potential, we get

dE _ Z°Np_

dx 87TMl)p

1
1n(k,2m+1)—1+—kz—

max

(3.21)

The stopping properties of the plasma can also be con-
veniently described by means of the (partial) range
defined as

dE'

R(E;, E)=— f dE’ (3.22)

It represents the length over which an ion of initial ener-
gy E,, slows down to an energy E. The complete
thermalization of the projectile ion occurs over the range
R (E;,,0) which then represents the penetration depth.

In Fig. 9 the stopping power (in MeV/cm) is plotted as
a function of the particle velocity (in cm/s) for different
values of the temperature ratio T (T, =20 eV and T; =35,
10, 20, 40 eV). The other parameters are Z =10
(Z=~0.077), m,=40 amu, n,=10"" cm>. The ion and

04 P

2 ’ \

>

Q
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50

So.

1 10 100
v, (10° cm/s)

FIG. 9. The stopping power —dE /dx (in MeV/cm) of a sin-
gle ion, with Z =10 (Z.£~0.077) and m, =40 amu, is plotted
versus its velocity v, (in 10° cm/s). The plasma parameters are
n,=10"7 cm™3, T,=20 eV, T;=5 eV (dash-dotted line), 10 eV
(dotted line), 20 eV (continuous line), and 40 eV (dashed line).
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v, (10° cm/s)

FIG. 10. The range R (in cm) of a charged particle with
m, =40 amu is plotted versus its velocity v, (in 108 cm/s) for the
same parameters as in Fig. 9.

the electron Bragg peaks are clearly seen. As expected,
only the ion peak is affected by the 7; variation. In Fig.
10 the range R (vP,O) (in cm) is shown versus the injec-
tion velocity v, (in cm/s), for the same parameters as in
Fig. 9. Finally, in Fig. 11 the range, normalized to Ap,, is
plotted versus 7, for m, =40 amu, Z =0.077, and
different values of injection velocity: v, =0.01,0.02,
0.03,0.06.

C. The stopping power of an ion pair

In analogy with the results of previous works on two-
ion correlation effects on the stopping power of test

J

dE _ Z2ND

plY (uv,)+TY (T'2M ' ?pv,) ][ 1+cos(kud))

FIG. 11. The range (in units of 10°Ap,) of a single ion, with
Z =0.077 and m, =40 amu, is plotted versus T, for different
values of its injection velocity (in units of vy,.) v, =0.01 (dotted
line), 0.02 (dashed line), 0.03 (dot-dashed line), and 0.06
(double-dotted line).

charged particles [5,7] and of Sec. II of this paper, we ex-
pect that the presence of a second projectile at a distance
of the order of or smaller than the correlation length
could affect the single particle scenario considered above.
We have computed the stopping power of a two-ion sys-
tem moving in a plasma with the same velocity v, as-
suming that the interparticle vector d remains constant in
time and parallel to the velocity vector v, [9,10].

The stopping power is computed by differentiating Eq.
(3.3), evaluating the resulting force at the positions of the
two ions, and summing up the two contributions. We get

dx 17'2

K max 1
S, "k [ du

where Z is the dimensionless effective charge of each of
the two ions assumed equal. It is seen that when the
charges are very close to each other, that is, d —0, the
correlation term cos(kud )— 1 and the stopping power of
the system becomes four times that of a single uncorrelat-
ed charge [see Eq. (3.18)], that is, twice that of a couple of
uncorrelated projectiles. In the opposite limit, for
d — «, the argument of cosine oscillates very fast with k
and the contribution becomes negligible. The single par-
ticle stopping power is then recovered. In the following
we shall give approximated analytical expressions of Eq.
(3.23) in the three velocity intervals already considered.

1. Stopping power of an ion pair for v, <<v;

At low projectile velocity, by expanding the dielectric
function for small argument, we get
dE Z’Np

_7;=,6_‘/_2_T/Z_UP(I+T3/2M1/2)
T

krax +T+1 ]_1 T+1

+T+1

ol el o k2

max

(3.24)

(k24X (pv,)+ TX (T'2M "2, ) P+ Y (u, )+ TY (T'2M ' pv,) 1?

»  (3.23)

[

It is observed that, at the dominant order in the expan-
sions, no dependence on d appears, which means that for
very slow particles two-ion correlation effects are negligi-
ble.

2. Stopping power of an ion pair for v,; <<v, <<c,

As shown by the previous analysis of the ES potential,
for T>>1 ion-acoustic oscillations are excited when the
projectile velocity is in the range presently considered.
Therefore we expect that correlation effects may affect
the value of the stopping power. It is convenient to
separate the single particle contribution to the stopping
power from the correlated one:

dE dE dE
—_——— = —— 3.25
dx dx |sp dx |c (323
Here
g_E_ ZZND M 1 /2vp
dx sp 21erp2 b ::nin
(3.26)

el
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and the correlated contribution has been evaluated by
considering its collective part (long range, for k <1) only,
ie.,
coll
_4dE

D 1/2301/2
ax |, 2ln(T M vp)cos

T 27 My]

4
MI/ZUP :

(3.27)

The individual particle contribution to the two-ion corre-
lations is negligible.

In Eq. (3.27) the cosine term represents the correlation
effects. Its argument, (d/Ap;)(vy,;/v,) in dimensional
quantities, becomes smaller than unity for
d <Acorr=Ap;(v, /vy ), which gives an estimate of how
close the ions should be to behave in a strongly correlated
way. We observe that the correlation length A, does
not depend on T, and that the entire two-ion correlation
term depends on T, /T; only mildly through the logarith-
mic term.

3. Stopping power of an ion pair for ¢, <<v, <<v,

With reference to the notation of Eq. (3.25), we have
approximately

2
_% sp=ZZ;A}§D§ ln(k,zmx+1)—l+?2nj:
(3.28)
dE | _ Z’Np (Fmax K3
Tdx | 2mm2 Yo (AHE2?
kd
Xcos m
(3.29)

The former contribution is just twice that of Eq. (3.21),
while the latter represents the interference effects due to
the vicinage of the two ions. We observe that in this ve-
locity interval the slowing down process does not depend
on T.

We present now the results of the numerical integra-
tion of Eq. (3.23). In Fig. 12 the stopping power
—dE /dx, normalized to T, /Ap,, is plotted as a function
of the dimensionless ion-pair velocity v, for different
values of the dimensionless interparticle distance
d =0,0.05,0.1,0.2,0.5,1. Dashed lines correspond to the
case of uncorrelated projectiles (i.e., d = o). The param-
eters of the ions are Z =10, m, =40 amu. Two different
plasmas are considered: (a) n,=10' cm ™3, T,=T,=20
eV (corresponding to Ap, =0.1 um, Z =0.086, N, =116),
and (b) n,=10" cm™3, T,=100 eV, T;=10 eV
(Ap,=~0.02 um, Z =0.077, N, =137).

In Fig. 13 the total range R (v,,0), as defined by Eq.
(2.11), is plotted as a function of the injection velocity v,
of the ion pair, for different dimensionless interparticle
distance, d =0,0.05,0.2,1.5. HI parameters are the same

as those used in Fig. 12, and three sets of plasma parame-
ters have been considered: (a) n,=10" cm™3, T, =100
eV, T;=10 eV, (b) n,=10" cm™3, T,=100 eV, T,=10
eV, and (c) n,=10" cm ™3, T, =T,=50 eV.

In Fig. 14 the energy deposition profile of the ion pair,
that is, the stopping power —dE /dx (v) as a function of
the corresponding partial range R (v,,v), is shown for
different values of the interparticle distance:
d =0,0.05,0.2,1,5,10. Several plasma conditions are con-
sidered: (a) n,=10" cm ™3, 7,=100 eV, T;=10 eV, (b)
n,=10" em™3, T,=100 eV, T;=10 eV, (c) n,=10"
em 3, T,=T;=50 eV, and (d) n,=10" cm™3, T,=10
eV, T;=100 eV. It is observed that by increasing T; the
ion Bragg peaks are smoothed out due to the spreading of
the ion distribution function.

Finally, in Fig. 15 the range versus the dimensionless
interparticle distance is plotted for n, =107 cm™3 and
three values of the temperature ratios 7 =0.1,1,10, for
Z =10 m,=40 amu, v,=4X 10" cm/s. Here the abso-

4
lute value of R (v,) depends essentially on the electron
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FIG. 12. The stopping power —dE /dx (in units of T, /Ap,)
of an ion pair is plotted as a function of the projectile velocity v,
(in units of vy,), for different values of the interparticle distance
d =0 (curve a), 0.05 (curve b), 0.1 (curve ¢), 0.2 (curve d), 0.5
(curve e), 1 (curve f). Dashed lines correspond to the case of
uncorrelated particles (i.e., d = »). The parameters of the ions
are Z.;=10, m,=40 amu. Two different plasmas are con-
sidered: (a) n,=10" cm™3, T,=T;=20 eV (corresponding to
Ap.~0.1 um, Z =0.086, N =116); (b) n,=10" cm~3, T, =100
eV, T,=10 eV (Ap, ~0.02 um, Z =0.077, Np =137).
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temperature, while the more extended oscillation for
T =10 arises from the more efficient excitation of ion-
acoustic waves which determine the long-range correla-
tions. For 7 =0.1 the saturation of R versus d occurs
earlier for d =~ 1.

IV. SUMMARY OF THE RESULTS

The present paper has dealt with the problem of the
stopping power of heavy-ion pairs in a warm plasma
when their motion is affected by mutual correlations. The
previous analyses [4,5,7] devoted to suprathermal
(v, >>vy, ) ions have been extended to projectiles with
U, <V [9,10], where the interaction with plasma ions
should be retained.
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FIG. 13. The total range R (cm) of an ion pair is plotted
versus the projectile velocity v, (cm/s), for different values of
the interparticle distance d /A, =0 (curve a), 0.05 (curve b), 0.2
(curve ¢), 1 (curve d), 5 (curve e). The ion parameters are the
same as in Fig. 12. Three sets of plasma parameters have been
considered: (a) n,=10" cm™3, T,=100 eV, T;=10 eV; (b)
n,=10" ecm™3, T,=100 eV, T;=10 eV; (c) n,=10" cm™3,
T,=T,=50eV.
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FIG. 14. The energy deposition profile of an ion pair, with
Z.5=10 and m,=40 amu, i.e., —dE /dx (MeV/cm) versus the
partial range R (cm), is shown for different interparticle dis-
tances d =0 (curve a), 0.05 (curve b), 0.2 (curve ¢), 1 (curve d), 5
(curve e), 10 (curve f). Four different plasma conditions have
been considered: (a) n,=10'" cm™3, T,=100 eV, T;=10 eV; (b)
n,=10" cm™3, T,=100 eV, T;=10 eV; (c) n,=10" cm™3,
T,=T;=50eV;(d) n,=10" cm™, T,=10eV, T,=100 V.

It has been demonstrated that also at low velocities the
charged projectiles generate plasma oscillations extend-
ing over several Debye lengths, depending on the particle
velocity, and with amplitudes larger at higher tempera-
ture ratio(T, /T;) values. Conditions are then fulfilled for
the occurrence of two-ion correlation if the distance be-
tween the ions of the pair is smaller than the correlation
length, estimated as the wavelength of the excited oscilla-
tions.
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FIG. 15. The total range R (cm) of an ion pair, with Z =10
and m, =40 amu, is plotted versus the interparticle distance d
(in units of Ap,) for T,=10 eV and T;=100 eV (dot-dashed
line), T,=T,=50 eV (dashed line), T,=100 eV and T;=10 eV
(continuous line). Other parameters are n,=10'7 cm™> and
v, =4X 10" cm/s.
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A detailed study of the dependence of the ion-pair
stopping power from the parameters characterizing both
the projectiles and the target plasma has been carried out,
showing the enhanced stopping of close ions and the con-
sequent shortening of the range, especially in strongly
nonisothermal plasmas (T, >>T;).

The results discussed here show that the computation
of the stopping power of closely spaced ions, as may
occur in a dense conventional ion beam in which the ions
turn out to be bunched and to reach a particularly high
local density, or as it is just the case of the atoms which
constitute a molecular cluster [11,12], after it has entered
the target plasma, should be performed by retaining the
mutual correlation effects between couples of projectiles.

The experimental observation and investigation of the
correlation effects on the stopping power of relatively
slow projectiles, due to their extremely reduced range
(R=0.1-1 cm) in a low atomic number high density
plasma (neEIO”—IO19 cm™3), should be carried out by
measuring the energy loss of small clusters after the in-
teraction with a thin portion of a laser produced plasma
[3,16].

Finally, it should be noted that an important conse-
quence of an enhanced interaction between HIs and plas-
mas on the design of the target for an ICF based ther-
monuclear reactor is that it should be possible to reduce
the mass of the absorber layer (in the direct drive scheme)
or of the converter elements (in the indirect drive
scheme), and consequently to weaken the driver energy
demand to achieve the target implosion.

APPENDIX

A problem which arises when computing the energy
loss of a fast charged particle in a dispersive medium by
means of an average-field (dielectric) theory is the loga-
rithmic divergence of the k integration, at large k values,
or, correspondingly, of the b integration, at small impact
parameters [15]. The origin of the appearance of such an
J

Y

e

unphysical divergence is usually ascribed to the lack of
validity of the dielectric approach, which takes into ac-
count only weak interparticle interactions (through self-
consistent fields), when one tries to include the small dis-
tance interactions, corresponding to k=1/b>1/b_,,
where b_,, represents the impact parameter for a 90°
deflection. With this interpretation in mind, the k in-
tegration is usually limited above by introducing the
upper cutoff limit k,, =1/b, .

If the interaction of the test ion, of mass m, and
effective charge Z 4, occurs with background particles of
a single charged-particle population a, we have

(2 +2h,)

k& =m , (A1)

max na ‘ Zeﬁ‘ | e 2
which  depends on the species a. Here
m,,=my,m,/(m,+m,) is the reduced mass in the col-

lision between the test and the background particle.

Let us consider now a multispecies plasma (for exam-
ple, composed by electrons and ions), as that for which
Eq. (3.7) is to be evaluated. In this case, the argument
presented above no longer leads to an unequivocal way to
cut off the k integration. In fact, one can define separate-
ly two minimum impact parameters, one for the interac-
tion with the plasma electrons and another for the in-
teraction with the background ions.

The question is, which one of the two parameters
governs the cutting off of the k integral?

This problem is closely connected to our objective of
retaining the full dielectric response of the plasma. If the
interaction were in a very tenuous plasma, then e~ 1, the
denominator in Eq. (3.7) would be k* and we could
separate the electron and the ion contribution to the stop-
ping power and cutting off of each integral with its own
minimum impact parameter. In this respect one could be
induced to perform the same choice at high density, too,
by taking

_4dE _ Z’Np f"ﬁ-ax

3 (1
dx 27? 0 dkkfod”“

(k24 X,+TX, *+[Y,+TY,]?

+ fokﬁnaxdk ksfoldu,u

where k¢, and k!, are defined in Eq. (Al),
X, =X(uv,), X;=X(T'*M"'?uv,), and similarly for Y,
and Y;.

However, since we want to retain the complete form of
the dielectric function at the denominator, even if we in-
terpret the two addends at the numerator as representing
the electron and the ion contributions, respectively, the
denominator still continues to contain parts coming from
either species, for which the validity of the dielectric
theory should be guaranteed during the whole integra-
tion.

Then, we are led to require that the integration should

[k24+X,+TX,*+[Y,+TY,]?

, (A2)

[

be performed over all k values which guarantee the
significance of the whole function which is to be integrat-
ed. As a consequence, in this paper the minimum between
the k,,,, relevant to the electrons and that relevant to the
ions has been chosen as an upper limit in the k integra-
tion in Eq. (3.18).

In Fig. 16 the stopping power of a single ion, with
Z =10 and m, =40 amu, computed either by using this
latter choice of the cutoff parameter (continuous lines), or
by separating the ‘“electron” from the “ion” contribu-
tions to the test particle slowing down (dashed lines), has

been plotted as a function of the velocity v,. Four
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FIG. 16. The stopping power (in units of T, /Ap,) of a single ion, with Z =10 and m, =40 amu, is plotted versus its velocity v, (in
units of vy,,). Continuous lines refer to the choice of k,,, as the minimum between the electron and the ion values, as used in the
whole text. Dashed lines are obtained in the limit of tenuous plasma. Four different plasma conditions have been considered: (a)
n,=10Ycm™3 T,=100eV, T;=10eV; n,=10" cm™3, (b) T, =100 eV, T;=10 eV, (c) T,=T;=20 eV, (d) T,=20 eV, T;=40 eV.

different plasma conditions have been considered: (a)
n,=10"Y cm~3 T,=100 eV, T,=10 eV; n,=10'" cm 3,
(b) T,=100 eV, T;=10 eV, (c) T,=T;=20 eV, (d)
T,=20eV, T;,=40¢V.

It is observed that for T'=10 the two procedures lead
to very similar results. This is due to the fact that, for
T >>1, the interaction of the test ion with the electrons
and with the ions occurs in velocity ranges which are well
separated. At lower values of T the collective response of
the plasma to the transit of the charged projectile is such
that electrons and ions participate together in the excited

oscillations and in their damping, so that the stopping
power computed as if the plasma were tenuous underesti-
mates the intensity of the interaction. The only exception
is for very small velocities where the friction produced by
the electrons is negligible. Finally, for T <1 even the
linear part of the stopping power, for v, <<1, is affected
by the dielectric behavior of the medium.

It is also to be noted that the differences between the
two approaches seem to be more evident at higher densi-
ties, as expected. In the low density limit the two
descriptions should give the same results.
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